Harini Chandramouli Kiya Holmes Brandon Reeves Nora Stack

Michigan State University

2012.08.02

Brownian Motion and Harmonic Functions

• Points interior to the region describe population densities, temperatures, chemical concentrations, etc.

[Brownian Motion and Harmonic Functions](#page-0-0)

- Points interior to the region describe population densities, temperatures, chemical concentrations, etc.
	- The boundary values are given by $u_0(x,y)$

つひつ

- Points interior to the region describe population densities, temperatures, chemical concentrations, etc.
	- The boundary values are given by $u_0(x,y)$
- After a sufficient amount of time, the temperature at points interior are time-independent

- Points interior to the region describe population densities, temperatures, chemical concentrations, etc.
	- The boundary values are given by $u_0(x,y)$
- After a sufficient amount of time, the temperature at points interior are time-independent
	- $u_{xx} + u_{yy} = 0$ (Laplace's Equation)

- Points interior to the region describe population densities, temperatures, chemical concentrations, etc.
	- The boundary values are given by $u_0(x,y)$
- After a sufficient amount of time, the temperature at points interior are time-independent
	- $u_{xx} + u_{yy} = 0$ (Laplace's Equation)
	- In nice regions, the solution is well-known

• Kakutani (1944) showed that the solution, $u(x_0, y_0)$, to Laplace's equation can be approximated by considering Brownian motion from the point (x_0, y_0)

• Kakutani (1944) showed that the solution, $u(x_0, y_0)$, to Laplace's equation can be approximated by considering Brownian motion from the point (x_0, y_0)

• Kakutani (1944) showed that the solution, $u(x_0, y_0)$, to Laplace's equation can be approximated by considering Brownian motion from the point (x_0, y_0)

• Kakutani (1944) showed that the solution, $u(x_0, y_0)$, to Laplace's equation can be approximated by considering Brownian motion from the point (x_0, y_0)

[Brownian Motion and Harmonic Functions](#page-0-0)

• Kakutani (1944) showed that the solution, $u(x_0, y_0)$, to Laplace's equation can be approximated by considering Brownian motion from the point (x_0, y_0)

[Brownian Motion and Harmonic Functions](#page-0-0)

• Kakutani (1944) showed that the solution, $u(x_0, y_0)$, to Laplace's equation can be approximated by considering Brownian motion from the point (x_0, y_0)

[Brownian Motion and Harmonic Functions](#page-0-0)

つくい

- Kakutani (1944) showed that the solution, $u(x_0, y_0)$, to Laplace's equation can be approximated by considering Brownian motion from the point (x_0, y_0)
- We can use random walks to simulate Brownian motion
	- Specifically, the random walks on circles (RWoC) and spheres (RWoS)
	- We simulated Brownian motion in various regions and studied the probability density functions (PDFs) of the point of first encounter in these regions

• Pick point (x_0, y_0) in the region

メロメ メ都 メメ きょくほん

 $2Q$

画

- Pick point (x_0, y_0) in the region
- Create circle with (x_0, y_0) as the center

- Pick point (x_0, y_0) in the region
- Create circle with (x_0, y_0) as the center
- Randomly pick a point (x_1, y_1) on the circle

- Pick point (x_0, y_0) in the region
- Create circle with (x_0, y_0) as the center
- Randomly pick a point (x_1, y_1) on the circle
- \bullet (x_1, y_1) is either on the boundary or is somewhere else in the region

つひつ

- Pick point (x_0, y_0) in the region
- Create circle with (x_0, y_0) as the center
- Randomly pick a point (x_1, y_1) on the circle
- \bullet (x_1, y_1) is either on the boundary or is somewhere else in the region
- If (x_1, y_1) if on the boundary then walk on circles ends

- Pick point (x_0, y_0) in the region
- Create circle with (x_0, y_0) as the center
- Randomly pick a point (x_1, y_1) on the circle
- \bullet (x_1, y_1) is either on the boundary or is somewhere else in the region
- If (x_1, y_1) if on the boundary then walk on circles ends
- If not, create circle with (x_1, y_1) as center

- Pick point (x_0, y_0) in the region
- Create circle with (x_0, y_0) as the center
- Randomly pick a point (x_1, y_1) on the circle
- \bullet (x_1, y_1) is either on the boundary or is somewhere else in the region
- If (x_1, y_1) if on the boundary then walk on circles ends
- If not, create circle with (x_1, y_1) as center
- Randomly pick a point (x_2, y_2) on the circle

[Brownian Motion and Harmonic Functions](#page-0-0)

- Pick point (x_0, y_0) in the region
- Create circle with (x_0, y_0) as the center
- Randomly pick a point (x_1, y_1) on the circle
- (x_1, y_1) is either on the boundary or is somewhere else in the region
- If (x_1, y_1) if on the boundary then walk on circles ends
- If not, create circle with (x_1, y_1) as center
- Randomly pick a point (x_2, y_2) on the circle
- Continue until process until you hit boundary of area

Made programs to simulate walk on circles for:

Made programs to simulate walk on circles for: • Line

- Made programs to simulate walk on circles for:
	- Line
	- Circle (Analytic solution known)
	- Upper Half-Plane (Analytic solution is known)

- Made programs to simulate walk on circles for:
	- a Line
	- Circle (Analytic solution known)
	- Upper Half-Plane (Analytic solution is known)
	- **Parabola**
	- **Quarter-Plane**

- Made programs to simulate walk on circles for:
	- a Line
	- Circle (Analytic solution known)
	- Upper Half-Plane (Analytic solution is known)
	- **Parabola**
	- **Quarter-Plane**
	- Square
	- **•** Triangle

- Made programs to simulate walk on circles for:
	- a Line
	- Circle (Analytic solution known)
	- Upper Half-Plane (Analytic solution is known)
	- Parabola
	- Quarter-Plane
	- Square
	- **•** Triangle
	- Upper Half-Space
	- Sphere

Simulation: Half Plane

• Beginning at (x_0, y_0) , with $y_0 > 0$ we simulate Brownian motion on the upper half plane

Simulation: Half Plane

• Beginning at (x_0, y_0) , with $y_0 > 0$ we simulate Brownian motion on the upper half plane

[Brownian Motion and Harmonic Functions](#page-0-0)

Simulation: Half Plane

• Beginning at (x_0, y_0) , with $y_0 > 0$ we simulate Brownian motion on the upper half plane

[Brownian Motion and Harmonic Functions](#page-0-0)

• How did our simulation perform?

[Brownian Motion and Harmonic Functions](#page-0-0)

 \prec \Box

• Solution on the half-plane is known:

• Solution on the half-plane is known:

$$
u(x_0, y_0) = \int_{-\infty}^{\infty} f_{y_0}(x_0 - \tau)u_0(\tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2} u_0(\tau) d\tau
$$

[Brownian Motion and Harmonic Functions](#page-0-0)

• Solution on the half-plane is known:

$$
u(x_0, y_0) = \int_{-\infty}^{\infty} f_{y_0}(x_0 - \tau) u_0(\tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2} u_0(\tau) d\tau
$$

• Where
$$
f_{y_0}(x_0 - \tau) = \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2}
$$

[Brownian Motion and Harmonic Functions](#page-0-0)

• Solution on the half-plane is known:

$$
u(x_0, y_0) = \int_{-\infty}^{\infty} f_{y_0}(x_0 - \tau) u_0(\tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2} u_0(\tau) d\tau
$$

• Where
$$
f_{y_0}(x_0 - \tau) = \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2}
$$

• Hence, our PDF is:

$$
f(x) = \frac{1}{\pi} \frac{y_0}{(x_0 - x)^2 + y_0^2}
$$

• What about more general regions in the plane?

• Solution on the half-plane is known:

$$
u(x_0, y_0) = \int_{-\infty}^{\infty} f_{y_0}(x_0 - \tau) u_0(\tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2} u_0(\tau) d\tau
$$

• Where
$$
f_{y_0}(x_0 - \tau) = \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2}
$$

• Hence, our PDF is:

$$
f(x) = \frac{1}{\pi} \frac{y_0}{(x_0 - x)^2 + y_0^2}
$$

- What about more general regions in the plane?
	- Conformal Mappings

つくい

• Solution on the half-plane is known:

$$
u(x_0, y_0) = \int_{-\infty}^{\infty} f_{y_0}(x_0 - \tau) u_0(\tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2} u_0(\tau) d\tau
$$

• Where
$$
f_{y_0}(x_0 - \tau) = \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2}
$$

• Hence, our PDF is:

$$
f(x) = \frac{1}{\pi} \frac{y_0}{(x_0 - x)^2 + y_0^2}
$$

- What about more general regions in the plane?
	- Conformal Mappings
	- Map one region bijectively into another region

• Solution on the half-plane is known:

$$
u(x_0, y_0) = \int_{-\infty}^{\infty} f_{y_0}(x_0 - \tau) u_0(\tau) d\tau
$$

=
$$
\int_{-\infty}^{\infty} \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2} u_0(\tau) d\tau
$$

• Where
$$
f_{y_0}(x_0 - \tau) = \frac{1}{\pi} \frac{y_0}{(x_0 - \tau)^2 + y_0^2}
$$

• Hence, our PDF is:

$$
f(x) = \frac{1}{\pi} \frac{y_0}{(x_0 - x)^2 + y_0^2}
$$

• What about more general regions in the plane?

- Conformal Mappings
- Map one region bijectively into another region
- **Riemann Mapping Theorem**

つひつ

Using Conformal Mappings

PDF

x-axis

$$
\frac{1}{\pi} \frac{4 x_0 y_0 \tau}{\left(x_0^2 - y_0^2 - \tau^2\right)^2 + \left(2 x_0 y_0\right)^2}
$$

y-axis

$$
\frac{1}{\pi} \frac{4 x_0 y_0 \tau}{\left(x_0^2 - y_0^2 + \tau^2\right)^2 + \left(2 x_0 y_0\right)^2}
$$

PDF

x-axis

$$
f(x) = \frac{1}{\pi} \frac{y_0}{(x_0 - x)^2 + y_0^2}
$$

イロト イ母 トイラ トイラト

 2990

G.

[Brownian Motion and Harmonic Functions](#page-0-0)

• What if we have no expression for our boundary values, but we can compute these values instead at particular points?

- What if we have no expression for our boundary values, but we can compute these values instead at particular points?
	- These points might be expensive

- What if we have no expression for our boundary values, but we can compute these values instead at particular points?
	- These points might be expensive
	- Our process requires computing many boundary values

つひつ

- What if we have no expression for our boundary values, but we can compute these values instead at particular points?
	- These points might be expensive
	- Our process requires computing many boundary values
- **•** Can we limit the number of times we compute the boundary values while still maintaining accurate approximations?

- What if we have no expression for our boundary values, but we can compute these values instead at particular points?
	- These points might be expensive
	- Our process requires computing many boundary values
- **•** Can we limit the number of times we compute the boundary values while still maintaining accurate approximations?

- What if we have no expression for our boundary values, but we can compute these values instead at particular points?
	- These points might be expensive
	- Our process requires computing many boundary values
- **•** Can we limit the number of times we compute the boundary values while still maintaining accurate approximations?

- What if we have no expression for our boundary values, but we can compute these values instead at particular points?
	- These points might be expensive
	- Our process requires computing many boundary values
- **•** Can we limit the number of times we compute the boundary values while still maintaining accurate approximations?

- What if we have no expression for our boundary values, but we can compute these values instead at particular points?
	- These points might be expensive
	- Our process requires computing many boundary values
- **•** Can we limit the number of times we compute the boundary values while still maintaining accurate approximations?

Recall:

$$
u(x,y) = \int_{-\infty}^{\infty} D(\tau)u_0(\tau)d\tau
$$

where D is the probability density function

Recall:

$$
u(x,y) = \int_{-\infty}^{\infty} D(\tau)u_0(\tau)d\tau
$$

where D is the probability density function

• Assumption: u_0 is a polynomial

Recall:

$$
u(x,y) = \int_{-\infty}^{\infty} D(\tau)u_0(\tau)d\tau
$$

where D is the probability density function

- Assumption: u_0 is a polynomial
- Then we can find some numbers D_i such that

$$
\int_{-\infty}^{\infty} D(\tau)u_0(\tau)d\tau = \sum_{i=1}^{10} D_i u_0(x_i)
$$

where u_0 is up to a 9th degree polynomial

[Brownian Motion and Harmonic Functions](#page-0-0)

Recall:

$$
u(x,y) = \int_{-\infty}^{\infty} D(\tau)u_0(\tau)d\tau
$$

where D is the probability density function

- Assumption: u_0 is a polynomial
- Then we can find some numbers D_i such that

$$
\int_{-\infty}^{\infty} D(\tau)u_0(\tau)d\tau = \sum_{i=1}^{10} D_i u_0(x_i)
$$

where u_0 is up to a 9th degree polynomial

• But we can do better, u_0 can be up to a 2(10) – 1 degree polynomial

[Brownian Motion and Harmonic Functions](#page-0-0)

• Given $D(x)$ (probability density function) we can construct an inner product on polynomials as

$$
(p,q)=\int_{-\infty}^{\infty}p(x)q(x)D(x)dx
$$

• Given $D(x)$ (probability density function) we can construct an inner product on polynomials as

$$
(p,q)=\int_{-\infty}^{\infty}p(x)q(x)D(x)dx
$$

• Given this inner product, we can find (by Gram-Schmidt Process) the nth degree polynomial, $p_n(x)$, orthogonal to all polynomials of lesser degree

• Given $D(x)$ (probability density function) we can construct an inner product on polynomials as

$$
(p,q)=\int_{-\infty}^{\infty}p(x)q(x)D(x)dx
$$

- **•** Given this inner product, we can find (by Gram-Schmidt Process) the nth degree polynomial, $p_n(x)$, orthogonal to all polynomials of lesser degree
	- Pick x_i as the roots of $p_n(x)$

 \bullet How do we obtain exact answers up to degree 2(10)-1?

- \bullet How do we obtain exact answers up to degree 2(10)-1?
	- Let $u_0(\tau)$ be our boundary condition, and $deg(u_0(\tau)) = 19$
	- $u_0(\tau) = \alpha(\tau)p_{10}(\tau) + r(\tau)$ where $deg(r) < deg(p_{10}) = 10$
	- Let $D(\tau)$ represent the distribution function

$$
\int_{-\infty}^{\infty} u_0(\tau) D(\tau) d\tau
$$

٠

- \bullet How do we obtain exact answers up to degree 2(10)-1?
	- Let $u_0(\tau)$ be our boundary condition, and $deg(u_0(\tau)) = 19$
	- $u_0(\tau) = \alpha(\tau)p_{10}(\tau) + r(\tau)$ where $deg(r) < deg(p_{10}) = 10$
	- Let $D(\tau)$ represent the distribution function

$$
\int_{-\infty}^{\infty} u_0(\tau)D(\tau)d\tau = \int_{-\infty}^{\infty} \alpha(\tau) p_{10}(\tau)D(\tau)d\tau + \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$

 \bullet How do we obtain exact answers up to degree 2(10)-1?

- Let $u_0(\tau)$ be our boundary condition, and $deg(u_0(\tau)) = 19$
- $u_0(\tau) = \alpha(\tau)p_{10}(\tau) + r(\tau)$ where $deg(r) < deg(p_{10}) = 10$
- Let $D(\tau)$ represent the distribution function

$$
\int_{-\infty}^{\infty} u_0(\tau)D(\tau)d\tau = \int_{-\infty}^{\infty} \alpha(\tau)p_{10}(\tau)D(\tau)d\tau + \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$

$$
= \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$

 \bullet How do we obtain exact answers up to degree 2(10)-1?

- Let $u_0(\tau)$ be our boundary condition, and $deg(u_0(\tau)) = 19$
- $u_0(\tau) = \alpha(\tau)p_{10}(\tau) + r(\tau)$ where $deg(r) < deg(p_{10}) = 10$

• Let $D(\tau)$ represent the distribution function

$$
\int_{-\infty}^{\infty} u_0(\tau)D(\tau)d\tau = \int_{-\infty}^{\infty} \alpha(\tau)p_{10}(\tau)D(\tau)d\tau + \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$

$$
= \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$

$$
= \sum_{i=1}^{10} r(x_i)D_i
$$

 \bullet How do we obtain exact answers up to degree 2(10)-1?

- Let $u_0(\tau)$ be our boundary condition, and $deg(u_0(\tau)) = 19$
- $u_0(\tau) = \alpha(\tau) p_{10}(\tau) + r(\tau)$ where $deg(r) < deg(p_{10}) = 10$

• Let $D(\tau)$ represent the distribution function

$$
\int_{-\infty}^{\infty} u_0(\tau)D(\tau)d\tau = \int_{-\infty}^{\infty} \alpha(\tau)p_{10}(\tau)D(\tau)d\tau + \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$

$$
= \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$

$$
= \sum_{i=1}^{10} r(x_i)D_i
$$

$$
= \sum_{i=1}^{10} \alpha(x_i)p_{10}(x_i)D_i + \sum_{i=1}^{10} r(x_i)D_i
$$

 \bullet How do we obtain exact answers up to degree 2(10)-1?

- Let $u_0(\tau)$ be our boundary condition, and $deg(u_0(\tau)) = 19$
- $u_0(\tau) = \alpha(\tau)p_{10}(\tau) + r(\tau)$ where $deg(r) < deg(p_{10}) = 10$

• Let $D(\tau)$ represent the distribution function

$$
\int_{-\infty}^{\infty} u_0(\tau)D(\tau)d\tau = \int_{-\infty}^{\infty} \alpha(\tau)p_{10}(\tau)D(\tau)d\tau + \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$
\n
$$
= \int_{-\infty}^{\infty} r(\tau)D(\tau)d\tau
$$
\n
$$
= \sum_{i=1}^{10} r(x_i)D_i
$$
\n
$$
= \sum_{i=1}^{10} \alpha(x_i)p_{10}(x_i)D_i + \sum_{i=1}^{10} r(x_i)D_i
$$
\n
$$
= \sum_{i=1}^{10} u_0(x_i)D_i
$$

[Brownian Motion and Harmonic Functions](#page-0-0)

What Have We Done?

 \bullet So if u_0 is a "nice" (smooth) function, then

$$
u(x,y) = \int_{-\infty}^{\infty} D(\tau)u_0(\tau)d\tau
$$

$$
\approx \sum_{i=1}^{10} u_0(x_i)D_i
$$

• This will be a good approximation

[Brownian Motion and Harmonic Functions](#page-0-0)

- **•** Brownian Motion and Laplace's Equation
- Walk on Circles and Spheres
- Simulating Walk on Circles and Spheres in different regions
- **Probability Density Functions and Conformal Mapping Techniques**
- **•** Less "Expensive" Real World Applications

NSA

Grant: H98230-11-10222.

- Dr. Igor Nazarov
- Dr. Nick Boros

 \blacktriangleright \blacktriangleleft

 \rightarrow \rightarrow \rightarrow

 \leftarrow

Thanks for Listening!

Questions?

[Brownian Motion and Harmonic Functions](#page-0-0)

 \leftarrow \blacktriangleright \blacktriangleright 4 \triangleright and \exists \triangleright and \exists \triangleright and

画