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Laplace’s Equation

Points interior to the region describe population densities,
temperatures, chemical concentrations, etc.

The boundary values are given by u0(x,y)

After a sufficient amount of time, the temperature at points
interior are time-independent

uxx + uyy = 0 (Laplace’s Equation)
In nice regions, the solution is well-known
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An Alternative Method

Kakutani (1944) showed that the solution, u(x0, y0), to
Laplace’s equation can be approximated by considering
Brownian motion from the point (x0, y0)
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We can use random walks to simulate Brownian motion
Specifically, the random walks on circles (RWoC) and spheres
(RWoS)
We simulated Brownian motion in various regions and studied
the probability density functions (PDFs) of the point of first
encounter in these regions
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Walk on Circles

Pick point (x0, y0) in the region

Create circle with (x0, y0) as the center

Randomly pick a point (x1, y1) on the circle

(x1, y1) is either on the boundary or is somewhere else in the
region

If (x1, y1) if on the boundary then walk on circles ends

If not, create circle with (x1, y1) as center

Randomly pick a point (x2, y2) on the circle

Continue until process until you hit boundary of area
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Walk on Circles in Regions

Made programs to simulate walk on circles for:

Line
Circle (Analytic solution known)
Upper Half-Plane (Analytic solution is known)
Parabola
Quarter-Plane
Square
Triangle
Upper Half-Space
Sphere
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Simulation: Half Plane

Beginning at (x0, y0), with y0 > 0 we simulate Brownian
motion on the upper half plane
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Simulation: Half Plane

How did our simulation perform?
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More General Regions

Solution on the half-plane is known:

u(x0, y0) =

∫ ∞
−∞

fy0(x0 − τ)u0(τ)dτ

=

∫ ∞
−∞

1

π

y0

(x0 − τ)2 + y02
u0(τ)dτ

Where fy0(x0 − τ) = 1
π

y0
(x0−τ)2+y02

Hence, our PDF is:
f (x) = 1

π
y0

(x0−x)2+y02

What about more general regions in the plane?

Conformal Mappings
Map one region bijectively into another region
Riemann Mapping Theorem
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Using Conformal Mappings

PDF

x-axis

1

π

4x0y0τ

(x02 − y02 − τ 2)2 + (2x0y0)2

y-axis

1

π

4x0y0τ

(x02 − y02 + τ 2)2 + (2x0y0)2

PDF

x-axis

f (x) =
1

π

y0

(x0 − x)2 + y02
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Real World Applications

What if we have no expression for our boundary values, but
we can compute these values instead at particular points?

These points might be expensive
Our process requires computing many boundary values

Can we limit the number of times we compute the boundary
values while still maintaining accurate approximations?
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Getting the Sum to Equal the Integral

Recall:

u(x , y) =

∫ ∞
−∞

D(τ)u0(τ)dτ

where D is the probability density function

Assumption: u0 is a polynomial

Then we can find some numbers Di such that∫ ∞
−∞

D(τ)u0(τ)dτ =
10∑
i=1

Diu0(xi )

where u0 is up to a 9th degree polynomial

But we can do better, u0 can be up to a 2(10) − 1 degree
polynomial
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Real World Applications

Given D(x) (probability density function) we can construct an
inner product on polynomials as

(p, q) =

∫ ∞
−∞

p(x)q(x)D(x)dx

Given this inner product, we can find (by Gram-Schmidt
Process) the nth degree polynomial, pn(x), orthogonal to all
polynomials of lesser degree

Pick xi as the roots of pn(x)

Brownian Motion and Harmonic Functions



Real World Applications

Given D(x) (probability density function) we can construct an
inner product on polynomials as

(p, q) =

∫ ∞
−∞

p(x)q(x)D(x)dx

Given this inner product, we can find (by Gram-Schmidt
Process) the nth degree polynomial, pn(x), orthogonal to all
polynomials of lesser degree

Pick xi as the roots of pn(x)

Brownian Motion and Harmonic Functions



Real World Applications

Given D(x) (probability density function) we can construct an
inner product on polynomials as

(p, q) =

∫ ∞
−∞

p(x)q(x)D(x)dx

Given this inner product, we can find (by Gram-Schmidt
Process) the nth degree polynomial, pn(x), orthogonal to all
polynomials of lesser degree

Pick xi as the roots of pn(x)

Brownian Motion and Harmonic Functions



Checking the Efficiency

How do we obtain exact answers up to degree 2(10)-1?

Let u0(τ) be our boundary condition, and deg(u0(τ)) = 19
u0(τ) = α(τ)p10(τ) + r(τ) where deg(r) < deg(p10) = 10
Let D(τ) represent the distribution function∫ ∞

−∞
u0(τ)D(τ)dτ =

∫ ∞
−∞

α(τ)p10(τ)D(τ)dτ +

∫ ∞
−∞

r(τ)D(τ)dτ

=

∫ ∞
−∞

r(τ)D(τ)dτ

=
10∑
i=1

r(xi )Di

=
10∑
i=1

α(xi )p10(xi )Di +
10∑
i=1

r(xi )Di

=
10∑
i=1

u0(xi )Di
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What Have We Done?

So if u0 is a “nice” (smooth) function, then

u(x , y) =

∫ ∞
−∞

D(τ)u0(τ)dτ

≈
10∑
i=1

u0(xi )Di

This will be a good approximation
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Summary

Brownian Motion and Laplace’s Equation

Walk on Circles and Spheres

Simulating Walk on Circles and Spheres in different regions

Probability Density Functions and Conformal Mapping
Techniques

Less “Expensive” Real World Applications
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Thanks for Listening!

Questions?
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